American University of Beirut
 MATH 202

Differential Equations
Spring 2007
Final Exam

Name: \qquad ID \#:
circle your section please: $\quad 13$ (T 11) 14 (T 12:30) 15 (T 2) 16 (T 9:30)

1. (10 points) Find the general solution of

$$
y^{(4)}-y=e^{x}
$$

2. (15 points) Use a power series centered at the point $x=0$ to find the general solution of:

$$
\left(1+x^{3}\right) y^{\prime \prime}-6 x y=0
$$

(simplify the recurrence as much as possible before solving for c_{a}, c_{1}, \ldots)
3. (15 points) Find a) $\mathcal{L}\{(3 t+1) \mathcal{U}(t-1)\}$
b) $\mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{s^{2}(s-1)}\right\}$
c) $\mathcal{L}\left\{t \int_{0}^{t} \tau e^{-\tau} d \tau\right\}$
4. a. (6 points) Use the substitution $x=e^{t}$ to solve the following differential equation in terms of Bessel functions:

$$
\frac{d^{2} y}{d t^{2}}+\left(e^{2 t}-\frac{1}{4}\right) y=0
$$

b. (4 points) express your answer in terms of the elementary functions
c. (10 points) Show that $y=\sqrt{x} J_{\nu}(x)$ is a solution of the differential equation

$$
x^{2} y^{\prime \prime}+\left(x^{2}-\nu^{2}+\frac{1}{4}\right) y=0
$$

5. (15 points) Use the Laplace transform to solve the following DE:

$$
y^{\prime}+y=f(t), \quad y(0)=5
$$

where $f(t)= \begin{cases}0 & 0 \leq t<\pi \\ 3 \cos t & t \geq \pi\end{cases}$
6. (15 points) Use a generalized (i.e. Frobenius) power series of the form $y=\sum_{n=0}^{+\infty} c_{n} x^{n+r}$ to find ONE solution of

$$
3 x^{2} y^{\prime \prime}+2 x y^{\prime}-x y=0
$$

corresponding to the LARGER indicial roots
7. (10 points) Find the general solution of the given system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x+2 y \\
\frac{d y}{d t}=4 x+3 y
\end{array}\right.
$$

